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Abstract—Some refinements of the classical Bernoulli-Euler theory of the bending of beams are
shown to be completely analogous to the effects produced by sources of self-stress in the Bernoulli-
Euler beam. This is true for deflections, bending moments and shearing forces. They determine
rotations, stresses and strains according to the specific refined theory under consideration. Thus,
by analogy. differences between the results of various refined theories, having been the object of
discussions in recent literature, become accessible to a systematic classification. In an Appendix,
this strategy of trcating refined theories from the point of view of the classical one is put into the
more general context of the Theory of Science.

INTRODUCTION

This paper is concerned with quasi-static engincering theories of plane, flexural defor-
mations of straight, lincar clastic beams loaded by lateral forces, leading to constitutive
equations for bending moments M and shearing forces Q of the following rather general
type:

M= —B(w . — B +w.).), (M

Q=SW+w,). ()

Lincarized geometrical conditions are assumed to be valid, and (.) , denotes the derivative
with respect to the axial coordinate. f is a theory-dependent factor. B and S denote the
bending and shearing stiffness, respectively. w is the transverse deflection (of the axis, or
an averaged deformation), and ¢ is a (generalized) cross-sectional rotation.

Without loss of substantial gencrality, but for the sake of comparison, the examples
given in the last section of the paper will be restricted to those of homogeneous beams of
constant, rectangular cross-section.

In that casc B = 2A*E/3 holds in all of the following theorics, with Young’s modulus
L. The rectangle’s height is 24, while its width is taken to be unity for convenience. In the
classical Bernoulli-Euler theory (see Griining (1914, p. 494) and the literature cited there)
of beams rigid in shear, § — oo, there is the kinematical constraint y +w_ = 0, and f does
not need to be considered. On the contrary, in the Timoshenko theory of shear-deformable
beams [Timoshenko (1921); see Griining (1914, p. 508), von Karman (1910, p. 334) for
some earlier contributions], we have f§ = 1. Frequently, S = 5Eh/[6(1 +v)] is to be found
in the literature ; v denotcs Poisson’s ratio. Additional to Timoshenko's refinement of the
Bernoulli-Euler theory, the refined theories of Levinson (1981), Rehfield and Murthy (1982)
and of Rychter (1988) will be considered, where the isotropic versions of the latter two

t Transmitted by Franz Zicgler.
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Table 1. Charactenstic parameters §. S and f s in non-dimensional form for 1sotropic beams of
rectangular cross-section, according to vanous refined theones

i S Eh BERS

Timoshenko (1921) { 3 (6+6v) 6(1+~v) 3
Levinson (1981) 435 2(3+3v) 6il-v) s
Rehtield and Murthy (1982)

(1) (8+5v) (10+ 10v) 23+ 3 38+ Sv) 20

(b) (84 5v) (84+9v) 202427y R =520

(c) IR+5v(20+25v) 4 (44 5v) 3R+ 5v) 20
Rychter (1988) (12435 (104 10v) Ll +v) (12+30) 10

theories are taken into account. Corresponding values of f and BER'S for rectangular cross-
sections are listed in Table 1. They have been re-calculated from the referenced papers.
Note some remarkable coincidences between the various theories, which does not necessarily
mean coincidences in the basic assumptions.

[t is noted that eqns (1) and (2) are also valid in the case of sandwich beams. For
sandwich beams with thin surface layers, where the bending stiffness of the facings, shearing
stresses in the facings and longitudinal normal stresses in the core are neglected, we have
f = l.sece.g. Plantema (1966) for appropriate expressions for Band S. For thick-sandwich
beams, an extension has been given recently by Gordaninejad and Bert (1989), which takes
into account the influence of bending and shear in the facings as well as in the core, and
results in constitutive equations of the same type as eqns (1) and (2). These equations also
hold approximately for shear-deformable theories of laminated beams and for latticed
beams. Furthermore, onc-dimensional specializations of sixth-order plate theories, see
Reissner (1985), can be casily incorporated. For a recent refined theory for isotropic beams
of ¢circuluar cross-section, fitting to cqns (1) and (2) scc Valisctty (1990).

Itis not within the scope of this contribution to argue the accuracy of the improvements
of the Bernoulli Euler theory with respect to exact solutions of the theory of clasticity, or
about the physical sense, correctness and consistency of some of these refinements. For
these questions the reader is referred to the cited papers, and also to Nicholson and
Symmonds (1977, with various discussions), Hutchinson (1981, 1987), Levinson (1987a)
and Rychter (1987).

It is emphasized, however, that a comparison between the outcomes of various theories
for different support and loading conditions leads to surprising differences as well as 1o
coincidences, see Levinson (1978b), where the Timoshenko theory and Levinson's theory
have been compared.

Consequently, it is necessary to classify and predict the results of the refined theories
in a systematic manner. In the following, this is done by means of a consistent analogy to
the Bernoulli-Euler theory. As a starting point, note from eqns (1) and (2) and Table 1
that all the referenced refined theories can be put into a unified form with respect to the
generalized coordinates and forces, w, ¥, and M, Q, respectively, which is due to the
introduction of the tracer f.

In order to introduce this analogy, a formal similarity between eqn (1) and the
constitutive equation of a Bernoulli-Euler beam under the action of an imposed curvature
loading « is noted (in the following, a bar refers to the Bernoulli-Euler theory) :

M= —B(W . +K). 3)

This type of loading results from sources of self-stress or from imposed dislocation
fields in the beam ; a corresponding example is the case of an imposed thermal curvature,
K = amy, where my = (l/J)Aj'Gz dA denotes the first cross-sectional moment of the tem-
perature 6, and J is the cross-sectional moment of inertia [see Ziegler and Irschik (1987)].
A further structural example for self-stresses are assembly stresses. e.g. due to kinks in the
axis of a redundant Bernoulli-Euler beam, corresponding to imposed singular dislocation-
type sources.
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Obviously. differences between the Bernoulli-Euler solution and the solution of a
refined theory must be due to a fictitious self-stress-type loading, because the former already
satisfies the equilibrium conditions with respect to the lateral force loading. Of course, the
completeness of this correspondence has to be proven, especially with respect to the support
conditions. Subsequently, this proof is achieved by means of the axiomatic principle of
virtual work. Thereby & is connected to the imposed lateral force loading p of the original
problem:

k= —Blw.+¥).. = —BQ./S = pB/S, @

which is the result of comparing eqns (1) and (3), using the equilibrium condition Q@ , = —p
as well as eqn (2). Note from eqn (4) that the factor /S, which has been introduced in
Table 1 in dimensionless form, characterizes the solution of a specific refined theory.

A PROBLEM-ORIENTED FORMULATION OF THE PRINCIPLE OF VIRTUAL WORK

Consider the state of equilibrium of a laterally-loaded beam according to one of the
refined theories mentioned above. The principle of virtual work is applied to this state,
where the influence function (Green's function) »* (¢, x) according to the Bernoulli-Euler
theory is used as a special virtual deformation (the superscript * refers to a single force in
the following) :

J‘I’(i)ﬁ*(cfuf) d§+JM(§')ﬁ’IS:(§,-Y) d¢=0. &)

In eqn (5), w*(&. x) is the deflection at the point &, assuming the beam to be rigid in shear,
due to a (dummy) single unit foree loading applicd at x. The first integral gives the virtual
work of the (original) external forces p, and the sccond that of the corresponding internal
ones; this sum has to vanish, where the integrals have to be extended over the whole
structure. Note that w* is a kinematically-admissible deformation field, because it is small
by definition, and there are no contradictions with respect to the support conditions.

The bending moments M do their elementary work at the virtual curvature
Y% = — W%, seeeqn (2) with S — o0, and of course there is no virtual work of the shearing
force Q or any other stress resultant done at a deformation field obeying the assumptions
for Bernoulli-Euler beams. In conclusion, the kinematical constraints of this clussical theory
do not violate the requirement of virtual admissibility with respect to one of the refined
theorics. Thus, eqn (5) is complete.

In a second step, the principle of virtual work is applied to the dummy problem, i.e.
to the Bernoulli-Euler beam under the action of a single unit force in x, where the deflections
w (due to the original loading p, according to a refined theory) are used as the virtual
deflections. [For the principle of virtual work applied to beams using the Mohr-Maxwell
dummy unit load technique see Chwalla and Parkus (1961, pp. 308-315).] The virtual work
statement of this auxiliary problem becomes

h(x) + j;ﬂ*(g. X)w e (§) dE+ Y M*(E, x)w. ()] = 0. 6

The first term in eqn (6) gives the virtual work of the unit dummy load. The second one is
the work of the corresponding internal forces, where the virtual curvature (—w,,) has to
be used. following the requirements of the Bernoulli-Euler theory. Within this theory, the
influence of the shearing forces 0 * or any other type of stress resultant upon the deformation
has to be neglected. Contrary to eqn (5). where a virtually-admissible deformation field has
been chosen, the refined deflection w, however, generally does not satisfy the support
conditions of the Bernoulli-Euler-type dummy problem. This is due to the fact that bound-
ary or continuity conditions of a refined theory have to be formulated in the rotation ¢
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rather than in the slope w,. In the case of (rigidly) clamped ends or for intermediate
point supports, the (refined) slope w, generally does not vanish. or it is not continuous.
respectively. Thus, rotational constraints have to be released according to Lagrange’s free-
body concept for virtual admissibility of the refined solution. Accordingly. the last term in
eqn (6) gives the virtual work of the released dummy bending moments, where

3] =w () —w (S, )

denotes the jump in slope at the jth support with removed rotational constraint. Noting,
however, the continuity condition [ (<,)] = 0, and using eqn (2), leads to

(v (E)] = R,/S. (7)

where R, = [Q(E,)] 1s the reaction force at this jth support. Furthermore. again according
to the principle of virtual work, it can be shown that

M*E 0 = = (), (8)

where it (x, £,) denotes the deflection in v due to a unit jump in slope applied at ¢, (according
to the Bernoulli-Euler theory) : A = [WA(&,.¢,))] = 1. Equation (8) is a specialization of the
so-called kinematical method by Mohr and Land for influence functions, compare e¢.g.
Griining (1914, pp. 476-484). (It is noted that eqn (8) can be derived by a two-stage
procedure similar to that given above : in a first step,the principle of virtual work is applicd
to the beam rigid in shear under the action of the dummy force, where the jth support is
released and W is used as the virtual deformation. In order to show that the corresponding
virtual work of the internal forces vanishes, the equilibrium of the beam under the action
of the imposed dislocation A is considered in a second step, taking W%, as the virtual
curvatures.)

ANALOGY AND EXAMPLES
Using the constitutive eqns (1) and (3), those integrands in the virtual work statements,
eqns (5) and (6), which correspond to the work of the internal forces, cun be expressed in
terms of static quantitics only :
M*w. = —M*M|B— M*«, )
Mk, = — MM*/B, (10)

with x of eqn (4). Thus, eqn (6) can be inserted into eqn (5), which gives
w=jpﬁ"‘ dé+JK1‘V1"di-{-Z(R,/S)W‘A(f,), (1
7

where eqns (7) and (8) have been used.

Equation (11) forms a complete analogy between the Bernoulli-Euler theory and the
refined theories, decomposing the solutions of the latter into three Bernoulli-Euler-type
parts:

W= W, +W,+Wwi, (12a)

where the same decomposition holds for M and @
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M=M+M,+M, (12b)
0=0,+0:+0; (12¢)

Equation (12b) follows by inserting (12a) into (1), noting eqns (3) and (4). Equation (12¢)
is then due to the equilibrium condition M, = Q. Having calculated w and Q by analogy,
the generalized cross-sectional rotation ¢ follows from eqn (2). The mechanical meaning
of this partitioning is the following:

The part w, denotes the associated Bernoulli-Euler solution, due to-the imposed lateral
force loading p:

wi(x) = jp(f)'ﬁ* (x,8)d¢, (13

where the reciprocity theorem of Maxwell, w*(¢, x) = w*(x,{) [e.g. Griining (1912, pp.
491-494)] has been used in the first integral of eqn (1). (Again, this theorem can be
considered as the result of a problem-oriented, two-stage application of the principle of
virtual work, using the states of equilibrium due to single forces applied in x and ¢,
respectively, and equating the virtual work of the internal forces.) Equation (13) simply
reflects the principle of superposition in lincar structures.

The second part W, corresponds to the deflection of a Bernoulli-Euler beam loaded by
the imposed curvature x of eqn (4) (recall that « is proportional to the original lateral
loading p) :

wa(x) = Jx(i)ﬁ*(é* x)dé. (14)

This expression corresponds to Maysel’s integration method of thermoclasticity, sce Ziegler
and Irschik (1987), where a two-stage derivation (including virtually-inadmissible defor-
mation fields und comparing the equilibrium states due to x and a single dummy force) has
been given. Equation (14) gives the correction of the classical solution with respect to the
effect of the distributed lateral loading. Noting eqn (4), it is seen from Table | that this
correction is the same in the theories of Timoshenko (1921) and of Levinson (1981).
Equation (14) yields identical results for all three versions of the refined theory derived by
Rehficld and Murthy (1982). The ratio between these two sets of corrections is:

WarL/Warm = 8(1+v)/(8+5v) (15

where T,L and RM stand for the Timoshenko, Levinson and Rehfield-Murthy theory,
respectively. Additionally, there is [R refers to the refined theory of Rychter (1988)]:

Wore/War = 1201 +v)/(12+5v). (16)

All of the solutions for w, coincide in the case where v = 0.
Using the properties of the Dirac delta function, it is seen from eqn (14) that the refined
theories result in a jump in slope due to a single force:

Wiy, §) = J.é(f— HM*(E x)dE = —w?(x,9), (17

where & denotes the point of application, and eqn (8) has been used. Consequently, eqn
(14) will give a non-trivial contribution for higher-order load singularities, if it is assumed
that they result from single forces perpendicular to the beam axis, see the results of Stamm
and Witte (1974, p. 34) for couples applied to a Timoshenko beam.
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Furthermore. it has been shown by Ziegler and Irschik (1987) that an integral of the type
(14) vanishes for all x. if the distribution of  is proportional to the corresponding bending
moment distribution M, = — B(\W, ., +«). Because M- is of the eigenstress type. it is due
to reaction forces in redundant beams. and therefore it is spanwise linearly distributed.
Thus, the vanishing of the correction term W, can easily be predicted.

Note, on the other hand. that ', is the only correction term in the statical determinate
case of a one-span, simply-supported beam. where no rotational boundary conditions are
involved, For an example of the coincidence of the Timoshenko and the Levison theory in
that case, see Levinson (1987b) for the uniformly-loaded beam. The validity of eqn (15)
for this example can be proven by means of results given in Rehfield and Murthy (1982).
The corresponding solution of eqn (14) itself is - = w(ax—x7) 2 [e.g. Ziegler and Irschik
(1987)] which—using eqn (4) and Table I-—coincides with the correction terms given in the
papers referenced above. Here, ¢ denotes the span.

The third part wiin eqn (14) corresponds to the deflection of the Bernoulli-Euler beam
due to imposed singular dislocations of rotational type {(kinks. jumps in slope) :

() = ) (RSN (. &), (18)

where the kinks have to be applied at those supports of the Bernoulli-Euler beam which
correspond to rotational boundary or continuity conditions in the refined theories. At the
jthsupport. the amount of kink is R,/S. Equation (18) gives the correction of the Bernoulli
FEuler theory with respect to the support conditions.

Consider, for example, the simple case of a cantilever beam under the action of a tip
force /. In this case, we have w, = 0. The reaction force at the clamped end v = 0is R = F,
and therefore () = Fu's. Using the proper value of § from Table 1, coincidence with
the results presented in Levinson (1987b) and Rychter (1988) is achicved.

Consider, furthermore, the case of a clumped clamped beam, 0 < v <o with a
uniformly-distributed lateral loading p. The reaction force and clamping moment at x = 0
according to the Bernoulli -Fuler theory are Ry = pa/2, M o = pa*[12, respectively. From
global equilibrium and symmetry considerations, we have R.y = Ry, =0, and theretore
total R, = R,,. The moment due to k is My, = — B(pfl/S). and the kinks at the clamped
ends give My, = 2B(R,/S)/a = B(p/S). The correction term (M 3+ My,) therefore
vanishes in the Timoshenko theory with f§ = 1, sce Table 1. This has been noted by Rehficld
and Murthy (1982), who derived non-vanishing cxpressions for all three of their theories.
Using the values for S and fi/S listed in Table 1, coincidence with these results is achieved.

For more general cases of statical indeterminate beams the Rjs in eqn (18) are not
known in advance, but follow from R, = Ry + Ry + Ry, where Ry, is a linear function of
all kinks R,/S. As a simple example of that type, consider a clamped-hinged beam of
span { with uniformly-distributed loading p. At the clamped end, we have R\, = 5pli8.
R.o = 3(fip/S)B/2 and R;, = —3(R,/S)B/I*. By adding and equating for R, in the case
f = 1, coincidence with a result by Stamm and Witte (1974, p. 38) for a Timoshenko-type
theory iy achieved.

All the results for the Bernoulli -Euler theory applied to solve the preceding examples
can be taken from standard textbooks on structural mechanics, see for example, the tables
presented in Duddeck and Ahrens (1982, pp. 602-625).

Finally, with respect to a widely-used procedure for the Timoshenko theory it is noted
that only in the simple case of a one-span, hinged - hinged beam do we have i, = w, and
W,y = 1y, with

wy o= —MBD wy o= —pS0 ow = (19}
w,. w, denote the so-called bending and shear part of the deflection [sce von Karman (1910,

p. 334)]. In the statical determinate casc of a cantilever, it is possible to sct wy = Wyt
In the general case of redundant beams. however, w, and w, are coupled by means of the
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boundary conditions, and there is no analogy between this bending and shear parts and
solutions of the Bernoulli-Euler theory.

CONCLUSION

Using the principle of virtual work in a special. problem-oriented formulation, an
analogy has been established between some refined theories of the bending of beams
and the classical Bernoulli-Euler theory. Corrections to the classical solution have been
interpreted as being due to additional sources of self-stress acting in the Bernoulli-Euler
beam. Two types of self-stress loadings are involved : distributed curvature loadings, similar
to thermal curvatures, and singular dislocations of kink type, the latter accounting for the
change in rotational support constraints.

Clamped and hinged boundary conditions as well as intermediate point supports have
been considered. For comparison's sake. the examples have been restricted to beams of
constant. rectangular cross-section. (Extensions to other geometries are self-evident.) By
means of this analogy, refined expressions for deflections, bending moments and shear forces
can be evaluated from standard. well-known Bernoulli-Euler-type solution procedures of
structural mechanics. The two-dimensional fields of deformations. stresses and strains are
calculated afterwards according to the specific rules of the refined theories.

At first glance, the strategy of establishing analogics between theories for one and the
same problem seems to be surprising. The background of this procedure with respect to
the Theory of Science, thercfore, is discussed in the Appendix, where some further appli-
cations are mentioned.
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APPENDIX

Following K. R. Popper, the situation of competitive theories, which is characteristic for problems in natural
sciences, results from the critical discussion of a basic, classical theory, where some limitations or shortcomings
tead to the development of refined theories [e.g. Popper (1966, 1970)]. (These refined theories have to be critically
examined themselves, giving rise to a re-start of the process.) The refined or extended theorics, generally carrying
a higher content of information, are superior to the classical one, and the latter should be omitted from a scientific
point of view.

In practice, however, this clearance seldom takes place, but refined theories do not win the competition for
aceeptance during @ longer period of time. The main reasons for this are a lack of continuing education and a
certain moment of wnertia in developing methods for the convenient treatment of retined theories, while methods
for the classical theory remain a ficld of interest.

[t seems reasonable to overcome these drawbacks by applying the principle of analogy to Popper’s scheme
of scientific development. In the ficld of mechanics, this principle was proposed by £, Mach [see Mach (1883,
1902) and Voss (1901, p. 20]. Commonly, it is used by transterring well-known methods from one problem to
an entirely different one.

If it is possible, however, to establish an analogy between the refined theories and the classical one itself,
problems can casily be solved according to the rules of refined theories using widely-known methods for the
classical one, Hence, the practical acceptance of the refined theories may thereby be increased, while their results
can be clussitied in a systematic muanner by considering them i the light of the clussical theory. Paralleling the
terminology of Popper (1966), the classical, clementary theory thus finds an ccological miche.

Of course, in order 1o establish such an analogy, the range of applicability of the clementary theory has to
be extended slightly, but without leaving its basic limitations.

Above, in the context of beam theories, this has been done by considering sources of self-stress in the classical
formulation, in addition to the (original) lateral loading. This type of source loading has been extensively studied
[see Reilner (1931) and Mura (1987)]. For structural applications of thermal loadings in Bernoullt- Euler beams,
see Zicgler and trschik (1987).

In a similar manner, an analogy between the elementary theory of the bending of plates and their shear
deformable extensions has been established carlier for simply-supported plates of polygonal planform [lrschik
(1982); Irschik (1985); Irschik e al. (1989)].

Furthermore, problems of the vibrations of structures, which are driven into the inclastic range by severe
Joadings. have been treated by considering the non-lincar part of strain to be analogous to additional sources of
self-stress in the linear elastic “background™ structure. Thus, powerful methods of classical lincar clastic dynamics,
such as influence functions or modal analysis, become applicable in the extended situation of physical non-linearity
by analogy [see Zicgler and Irschik (1985)]. For a review, see lrschik and Ziegler (1988). For the application to
clasto-viscoplastic structures with material degradation, see Fotiu e al. (1989), and for rundom vibrations of
clastoplastic structures see Irschik and Ziegler (1989).

Likewise to the analogy for refined beam theories, these applications serve as examples for the use of well-
known classical methods of analysis in the context of advanced, “higher order™ or extended theorics.



